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Abstract—Recently, hydrodynaniic chromatography (HDC) has become an important probe for deler-
mining the molecular size or molecular shape in the sub-micron range. Although a lot of studies on HDC
were perfurmed, the clear understanding on the transport betavior of polymier solutions in porous media has
not been achieved yet. In this study, the flow and dynamic behavior of polymer molecules in a packed HDC

column is fully analyzed by extending the molecular kinetie approach of dilute polymer solution in a confin-

ed geomelry o elucidate the effects of relative particle sizes as well as the flow strength on the retention factor

(Rp. Rrequation of each simple polymer model was developed. and the numerical simulation was worked out

to tlustrate the R, for rigid rod (RR) polymiers. Theoretical predictiuns were in remarkable agreement with our

experimental results of xanthar gum and other published data despite of several appraximations. Significant

size effects were observed, and fur RR model the Ry decreased with increasing the flow strength within a par-

ticular range. This feature emphasized a transition behavior from weak to strong flow due to the orientational

effect of xanthan molecules. It should be noted that our najor concern is restricied solely to the hydiody-

namic force.

INTRODUCTION

Understanding the flow behavior of polymer
solutions in confined geometries is an important
problem in both theoretical and practical senses.
There are numerous porous media flows in which
confining geometries have a great influence on the
dynarnic behavior of polymer solutions. Examples of
this type include chromatographic flow, enhanced oil
recovery, and coating flow. Polymer solutions exhibit
lots of dramatic effects during such flows through po-
rous media as listed above. By considering these ef-
fects one can easily find a common feature in them,
which is the flow induced conformation of polymer
chains, such as stretching behavior of flexible poly-
mers or orientational change for rigid polymers. In
order to develop a molecular theory describing the
behavior of dilute polymer solutions in flowing sys-
tems, very simple idealizations of a macromolecule
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must be taken. Despite of many kinds of synthetic
polymers and biopolymers, they can be divided into
two groups: flexible and rigid polymers, which can be
modeled as elastic dumbbell (ED) and rigid dumbbell
(RD), respectively. Details on the molecular theory of
polymeric liquids can be found in the book of Bird et
al. {1].

The hydrodynamic interaction effects in steady
shear flow of RD suspensions at arbitrary shear rates
were first reported by Stewart and Sorensen [2]. Their
computation was done by using Galerkin's method,
with linear combination of the spherical harmonics as
a trial function. A rectilinear Poiseuille flow was con-
sidered by Aubert and Tirrell [3] who predicted the
existence of migration of polymer chains in such a
nonhomogeneous flow field. Stasiak and Cohen [4]
also reported calculations for rectilinear Poiseuille flow
using the ED and RD models. In their analysis, how-
ever, studies have been restricted to the case of an
infinite domain. Recently, Park and Fuller (5] and
Park [6] established the RD model polymer in con-
fined geometries under simple shear flow to consider
the proper boundary effect. Although one can perform
many of the theoretical analyses with relative ease due
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to the simplicity of the motecular models, the clear
description to the flow behavior of polymer solutions
in porous media has not been achieved.

An isolated polymer molecule flowing down in
confined geometries and undergoing Brownian
motion will have an average velocity greater than that
of the solvent. which was already recognized two
decades ago by DiMarzio and Guttman {7]. The ratio of
average particle velocity to average fluid velocity is
called retention factor (R, for brevity), which is always
greater than one, indicating that on the average, the
particles travel through the column faster than the
fluid itself. A more sophisticated theory that was later
developed by Brenner and Gaydos (8] incorporated a
more accurate analysis of hydrodynamic effects and
also included the interaction potential between the
colloidal particle and the conduit wall. The flow sepa-
ration of colloidal particles according to size was first
achieved by Small 9], who developed -an useful
experimental technique to analyze the sizes of poly-
styrene latex particles and named hydrodynamic chro-
matography (HDC, for brevity). In his system, in addi-
tion to hydrodynamic exclusion, the electrostatic force
between latex particles and supports was an important
factor too. A clear and fundamental understanding of
the separation behavior in HDC has been developed
by several investigators [10-12].

Up to that point, every study was limited to an iso-
tropic molecule so that there was no evidence of the
dependence of R, on the flow strength. However, if an
anisotropic molecule is dealt with then it can be ex-
pected apparently that the R, will depend on flow
strength due to its orientation alignment along the
flow. Separation of anisotropic molecules by HDC has
been studied mainly by Prud’homme and his co-work-
ers after the 1980's [13-15]. Size fractionations of high
molecular weight polymers, such as xanthan polysac-
charide (cf. more precisely speaking, that is slightly
semni-flexible) and tobacco mosaic virus (TMV) as rigid
polymers, and partially hydrolyzed pclyacrylamide
and dextran as flexible polymers were experimented
(in this regard see, e.g., Refs. 13,14), and then the
deformation and orientation phenomena in HDC were
interpreted semiquantitatively (see, e.g.. Ref. 15). In
their researches, however, the efficiency of the size
fractionation observed was poor due to the too high
flow rates used. Moreover, the decreasing tendency of
R, with increasing flow rate in case of TMV, which was
so rapid unfortunately that even it looks like impossi-
ble to analyze the sizes of rigid polymers with HDC,
was detected. Therefore, we shall try to solve the basic
problem just including the hydrodynamic effect, and
to explain these results as well as quartitatively and

clearly to have some idea of the usefulness for HDC
technique in case of macromolecule.

A theoretical study closely related to the present
work is that of Park and Fuller [5], who reported the
dynamic behavior of polymer solution between two
parallel plates with simple shear flow. Their results
successfully hold the essential feature of flow of dilute
polymer solution in confined geometries. By u:ilizing
these results Park also postulated that there were two
regimes of different dependences of flow behavior of
rigid polymer on flow rates. The purpose of this study
is to predict the flow behavior of dilute polymer solu-
tion in packed HDC from the simple molecular modelis
and to elucidate, inter alia, the effects of arbitrary parti-
cle sizes as well as the flow strength on the R, by
extending both the basic concept and theoretical anal-
ysis of Park [6). In addition, we compare the the-
oretical predictions with our experiments or pre-
viously reported data, and then we shall point out dis-
tinctly the conclusions from the good agreement. Re-
markably, our present work successfully contribute to
overcome the restricted approach of previous studies.

BASIC FORMULATION

Conventional size-exclusion or gel permeation
chromatography (GPC) is a well established technique
for characterizing molecular weight distributions of
polymers [16]. Since 1974, HDC has become an im-
portant tool for molecular size analysis in the sub-
micron range. Its method is similar to GPC, but differs
in several important respects. A HDC column packed
with nonporous packing presents the particles sus-
pended in the carrier solvent with a tortuous path
through a large number of capillary-like tunnels.

1. Retention Factor

The first modeling step is to reduce the actual three
dimensional bed structure of a HDC column to a set of
equivalent capillaries as shown in Figure 1. This ide-
alized HDC model shows that large particles are ex-
cluded faster from regions near the wall, where axial
velocities are small. Thus larger particles move along
the capillary at greater average velocity and small re-
tention time. Here the ratio of the average particle
velocity (V) to the average eluant velocity (V,,) can be
expressed using the separation factor, R, defined by
Ve _ta 0

Vo to
where t,, and t, are eluant elution time and particle
elution time, respectively. V, is determined by meas-
uring the t,, and V,, by measuring the average elution
time of a marker species of molecular size (that is, t,,).

R,
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Fig. 1. Mlustration of preliminary modeling steps in
HDC.
The porous media structure of a packed column, dis-
placed at the top, is reduced to the simple capillary
model at the bottom.

particle exclusion layer

For a symmetrical chromatogram, the average resi-
dence time corresponds to the peak elution time. Basi-
cally if we know the distribution function and velocity
profile for particles, then we can calculate the R, by
simple multiplication of these two and then integration
over all possible space.
2. Single Brownian (SB) Model

Let us suppose that the spherical colloidal particle
1s an isotropic, that is, single Brownian (SB) model
polymer. The R, of this model polymer in the capillary
tube can be estimated from simple arguments based
on steric exclusion alone. In SB model, we assume iso-
tropic mass distribution so that there is no term re-
sponsible for the alignment of polymer due to the flow.
Thus the flow remains Poiseuille velocity profile as far
as the flow rate is small. The dimensionless length
scale of SB model polymer is defined by ¢ =d/D as
shown in Figure 2a. The local eluant velocity at r and
the average eluant velocity can be written :n the fol-
lowing forms, respectively,

U T -,F(‘%,_rz) 0
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Fig. 2. The flow field situations for (a) SB model in
capillary tube and (b) ED model between two
parallel plates.

If the concentration profile is constant the concentra-
tion distribution C(r) along the radial axis can be ob-
tained by the normalization condition.
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Averaging over all radial positions available to the par-
ticle, the average particle velocity can be obtained by
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therefore,
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Notably, this equation is identical to that achieved by
Prieve and Hoysar: [10] in their analysis of an equiv-
alent problem. They supposed that, as a limiting case.
the role of colloidal forces was negligible, and then
recognized the purely hydrodynamic effect.

3. Elastic Dumbbell (ED) Model

The siniple conceptual model which has been ap-
plied most frequently for the study of dilute solutions
of flexible polymer chains is the linear ED mode! (cf.
[1]). In this ED model, the chain is represented by two
beads of hydrodynamic friction and connected by an
entropic spring force. In Figure 2b this spring is taken
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to be linear with a force constant H and the friction
coefficients of each bead {. By including the retarda-
tion effect of particles, velocity profiles for eluant and
particle can be given by the respective expressions

[
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v 1 o

)

The nondimensionalized equilibrium distribution fune-
tion which can be derived exactly as described by Au-
bert and Tirrell [3,17] is given by

W, 7. 7. =Cexp:—a’z’ 19
where
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Ci== T T — (1o
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Here, length has been scaled by a’ = (2kT/H)™ and
a=a'l Is the reciprocal dimensionless length scale. k
and T are Boltzmann constant and absolute tempera-
ture, respectively. The probability distribution of cen-
ter of mass will not be changed by the presence of a
one-dimensicnal flow along the x direction. Therefore,
if the flow strength is weak enough to apply the equi-
librium distribution function, the R, of this case can be
obtairied as
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T 121 a2
- as derfa [ lmet g
et J ta @ g a7
- .- ——— — JE e 1
- 1 - 3
erfar « =¥ -1

4.Rigid Dumbbell (RD) or Rigid Rod (RR) Model

The model used here is that of the rigid dumbbell
(RD) pictured in Figure 3a. This model is the simplest
possible description of a rigid polymer and has been
used extensively in the interpretation of dilute solu-
tions of such macromolecules. Now we would like to
have the appropriate distribution function to elucidate
the orientational change, but the exact distribution is
not available up to now even though polymers do not
disturb the Poiseuille flow. However, the simple shear
solution would be very useful because the main ori-
entational change will notably occur near the wall.
Therefore, the calculation presented is for the simple
shear flow ¢ =a{z,0,0) depicted in Figure 3b, where a
is the velocity gradient. The conformation of the RD
model polymer can be described through a distribu-
tion function ¢ (r). 1y) which preseribes the probability
of the bead location. After defining the bead separation

Z)
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(b}

Fig. 3. The RD model is considered (a) in spherical
coordinate system and (b) with flow geome-
try.

vector f=(ry1;) and the center of mass vector T, =
(r, -+ 1,)/2, the diffusion equation describing the evo]u-
tion of the probability distribution function ¢ (z.. 6,9 ;1)
can be obtained, where 8, ¢ are the polar angles. Fig-
ure 3a with the spherical coordinate system is the
same situation analyzed by Park and Fuller [5]). The
steady state diffusion equation is identical to that used
by Stasiak and Cohen (4] and the diffusion equation
for ¢ has the following form
h~¢*ﬂ§2¢‘ Ay 822:7 ¢ 1z
with the boundary condition at z. =

L o¢ | Q‘/’
ESYYEV IS az(

+{(1~ € cos 3)/2
= {J i3
and the normalization condition

Lagi=1, 0

Here we have defined the dimensionless velocity gra-
dient #=e/D, and dimensionless dumbbell length
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€= L//, where D,= 2kT/{L? is the rotational diffusiv-
ity, and { is the spacing between the parallel plates.
Time has been scaled to the relaxation time of the
dumbbeli, A =1/6D,. The operator & due to convec-
tion is identical to that used by Stasiak and Cohen [4],
and the operator A is the spherical Laplacian. Equa-
tion 14 is simply the conservation of total probability
and the normalization operator I can be obtained from
the consideration of the restriction placed on the con-
formation of the RD by boundaries, which was pre-
viously defined by Park and Fuller [5].
4-1. Flows of Arbitrary Strength

We shall employ the numerical scheme developed
by Stewart and Sorensen [2] for the same problem in
unbounded flow. The Brownian motion terms of cen-
ter of mass of the molecules and no flux boundary
condition will again be neglected as they do not play
any role in space-averaged rheological properties.
Equations (12) and (14) can be solved by a series ex-
pansion in terms of spherical harmonics:

N on m o
l/'ZN: ¢’eq£o’£o (A;nnpzn(/m,’ {15
where Aj is the coefficient of solution which will be

determined as a function of £, Pg, is the associated
Legendre polynomial of the first kind and C_, denotes
cos(m ¢ ). For no flow case, y,, can be given by

1 1 ’
TN N<e<]) (16a)
l4fr<1—e/2) O0=e<1) {16a

¢'eq: l

€
2; e>1). (16b)
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4-2. The Galerkin Solution and Matrix Formation

We have only particular harmonic terms due to the
symmetry of the problem, all that remains is to deter-
mine the coefficient A7, The residual function.# (#*")
is obtained by inserting Eq. (15) into Eq. (12)

FlPT = — Ap*" + QY™ {17
If #%" were the true solution the residual function
would vanish. Galerkin’s principle is then applied by
setting # (> orthogonal to each group of spherical

harmonics in Eq. (15) over the proper range of 8 and
& . In other words,

(F(P*IPPC,)= 0. 18
p= 0‘ ~’2q' q=1, 2_...'N'\
We then have N(N + 2) systems of equations for the
A?, coefficients.
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Table 1. Coefficients of Eq. (19)
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where the coefficients a7’ are defined in Table 1,9,
the Kronecker delta funcnon and all indices are non
negative integers. The coefficients K5, ,, are constants
which have the general form

Ko ]

where t, is defined by z_= (1-€t,)/2. Equation (14) pro-
vides the following equation for Af, to make the sys-
tem determinate:

PLPE O dtdt, o0

2qt Ir

6/ 2 N
S ¥
/2 n=1
Thus, the final [N(N +2) + 1] = (N + 1)? equations in
Egs. (19) and (21) must be solved simultaneously with

the systematic matrix calculation. In case of Pciseuille
type external flow, the velocity profile of RD or RR can

L=Ag+ Ko Ay 0= ey 2D
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log B
Fig. 4. Numerical results of the R, versus log £ rela-
tion for various values of ¢ in RR model.

be easily obtained by arithmetic averaging of the
velocities of each mass point. Thus,

v,= T, (—;— -z~ y€cos'fi (22)

where 7 is the retardation factor, that is, 1/4 for dumb-
bell (RD) and 1/12 for rod (RR).
4.3. R, Equation

Once distribution function and velocity profile for
particles are known, then it is straightforward to obtain
the value of R,. The R, equation of RD (or RR} model
polymer can be written in the following

R, a=6li¢iz., 8 $lv, iz, 8) .. 3
After integrating over spacial variables and utilizing
the definition of coefficients K's in Eq. (20), we have
R, = --1--—_%72 {[1—11/2 Loy et (1/8

+37/2) €A € 1(1/54 47/5) ~ (1/16
S3piaAL - £ /12 y)

Toe! Ko ,a—2K) AL, 24)
NUMERICAL COMPUTATION FOR R,OF
RIGID POLYMER MODEL

Very accurate R, profiles as a function of the loga-
rithmic dimensionless shear rate (= log 8) for various
values of the parameter € in the range of 0.0 to 1.0
were computed. Assigning the value of retardation fac-
tor ¥ in Eq. {24) results in the difference between RD
and RR model, and numerical results of RR model
from this simulation are presented in Figure 4. Con-
vergence of Galerkin's metrod insures that with in-

Precision _
metering High-pressure Syringe
Pump gauge HOC cotumne

Sample injection
valve

Glass bead

Xanthan particle

Fig. 5. Schematic diagram of the HDC experimental
setup.

creasing N the resulting solutions R, (N,N) will con-
verge in the mean toward R, at every value of £ pro-
vided that a unique exact solution for R, exists. Com-
putational procedures are repeated until the relative
error for the R, (N,N) is less than the convergence cri-
teria given by 0.5 x 1075, This number of N needed in-
creased with increasing 8, thus for log 2 =1.8, the
maximum N value of 15 was used. Computations giv-
en here were obtained on an Elxsi-6400 computer us-
ing a UNIX OS/BSD operating system. And details of
this algorithm are available in Appendix A.

EXPERIMENTS FOR RIGID ROD MODEL
POLYMER

1. Apparatus

The basic apparatus, including a detail of the chro-
matographic column, is shown schematically in Figure
5. An Eldex precision metering pump (Model AA- {i-
S) which is capable of a maximum flow rate of 10.0 m//
min with continuous downwards to 0.2 m//min was
used to pump the eluant from the reservoir. In order to
remove dust and other impure materials that might
foul the pump the eluant is filtered twice: once with a
0.5 .m Millipore filter during preparation, and again
with a 2.0 pm frit located at the pump inlet. The sam-
ple is injected into the eluant stream, without inter-
rupting flow to the column, through a Chromatronix 6
port injection valve (7010 RV} with a 1.0 m/ sample
toop. Three Alltech/Applied Science HPLC columns,
0.6 cm inner diameter by 50 c¢m long, were packed
with spherical glass beads from Potters Inc.. Glass

Korean J. Ch. E. (Vol. 7, No. 2)
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beads were successively washed with mixed solvents
of 0.1M hydrochloric acid, methanol, and acetone, and
then dried at 98°C. A solution of acetone in methanol
was used for particle dispersion when incorporation of
a marker was desired. Particle size distribution of glass
beads after sieving as measured on a particle size
counter (Micromeritics Inc.) gave the range of 18-
30 1m, and the mean particle diameter of about 23 .zm
could be obtained. The bulk density of glass beads had
a value of about 2.62 g/cm®. The dry packing of glass
beads was performed with Electric Vibro-Engraver
(Model V-74, Burgess Vibrocrafters Inc.), and the mean
bed porosity of the packed column was 0.353. When
eluant and sample come out of the column, they pass
into a Waters Series 441 UV/VIS absorbance detecior.
The polymer and marker species were detected in the
effluent by monitoring turbidity at 254 nm. Output
signals from the detector was monitored on a strip
chart recorder (Cole Parmer Inc.).
2. Materials

Note that the proper selection of eluant composi-
tion is especially important in chromatographic sepa-
rations of high molecular weight polymers, for which
interaction with the packing is mediated by the eluant.
A satisfactory eluant contained 0.002M disodium hy-
drogen phosphate (Na;HPO,), 0.05% sodium lauryl
sulfate (C,,H,s0505Na), and 0.01M formaldehyde
which had an ionic strength of about 0.005M. The pH
of this eluant was neutral: adjusted to 7.4-7.6. 1.0 x
10-*M sodium dichromate (Na,Cr,0,-2H,0) was used
as a marker. The RR model polymer studied in this
work was biopolymer xanthan. The xanthan gum
used was manufactured by fermentation of dextrose
with Xanthomonas campestris from Sigma Chemical
Co. (practical grade), which was diluted to 200 ppm
concentration. Interesting rheological properties of
xanthan solution possessing a cellulose chain as its
backbone structure arise from its ordered helical struc-
ture which produces a rigid rod-like conformation
{13,15]. Xanthan is rather insensitive to the ionic
strength of eluant as compared with other polyelec-
trolytes and is resistant to the mechanical degradation
considerably. Reported molecular weights and the in-
trinsic viscosities are in the range of (2-4) x 105, (4-7) x
10% em®/g, respectively [15,18-20].
3. Experimental Procedure

After the warming-up operation of about 15-30 min
all columns reached the steady state condition. The
sample of xanthan solution was mixed with marker
and then injected into the valve shown in Figure 5.
Thie adjacent overlap of the sample and marker peaks
was encountered frequently, thus we should record
the peaks separately. To investigate the particle size ef-
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Fig. 6. A comparison between our theory and ex-
perimental results of Small [9] for R,versus ¢
relation in SB model.

fect on the R, polymer chains of 200 ppm native, i.e.,
unmodified, xanthan prepared were degraded by soni-
cation procedure with Ultrasonic Dismembrator (Mod-
el 3000 from Fisher Co.) setting at 180 W power.
Sonication times were 5, 10, 20, 30, and 60 min, re-
spectively. The zero shear rate viscosities of native and
each of sonicated xanthans were determined by using
low-shear capillary viscometer of the Ubbelohde type.
[n order to examine the flow strength effect on the R/s
of selected xanthan solutions the flow rate was varied
in the range of 0.5 to 9.5 m{//min.

RESULTS AND DISCUSSION

1. Validity of the SB Model

For the comparison of our theoretical work with
other experimental studies, the Small's previously
published data of spherical polystyrene latex with dif-
ferent packing diameters D, al high ionic strength of
4.6 x 10°M [9,11), was analyzed to display the rela-
tionship between R, and e in Figure 6. The master
curve for € with different sizes of packing materials,
based on several simplifying assumptions, could be
construs i=d. The complex geometry of packing bed is
assumed reasonably as a bundle of straight capillary
tubes, and in consequence the equivalent capillary
radius r, can be estimated from the bed hydraulic
radius (cf. Ref. 21) as the relation

L Dee

e
]

3 1-€.



Flow and Dynamic Behavior of Dilute Polymer Solutions in Hydrodynamic Chromatography 133

1.08
!
= ]I}/
1.06
< .04}
| o
1.02}+
l(‘ L L I
0 0.05 0.1 0.15 02

E
Fig. 7. A comparison between our theory and ex-
perimental results of Prud’homme et al.
{13,15] for R, versus ¢ relation in ED model.

where e, is the mean bed porosity. For D, of 18 and 20
em each of the ¢, values presented in the above liter-
ature were 0.356 and 0.358, but for the cases of D, of
40 and 58 um the ¢, values which were not given in
literature were chosen as 0.378 and 0.396, respective-
ly, from a linear relationship between €, and D,
resulted in the small particle range. This prediction is
meaningful since the €,'s used are widely accepted
ranges for close random dry packing.

A good argreement between theoretical R,equation
and experimental results is found within the small e
region, that is, up to about 0.04. However, there is a
growing tendency that the experimental R, value is
smaller than the value evaluated by Eq. (6) with in-
creasing value, and so we feel require another phe-
rnomenological explanation. First of all, this behavior
is due to the wall effect occurred by the geometrical
porous media characteristics of periodically consiricled
tube, which is considerable in narrow region of space.
Mexl, it must be pointed out that hydrodynanmic force
1s the only matter of concern al this work. Hence, we
should necessarily keep in mind the vole of coffoidal
forces and the surface adsorption of particles, wieh
inay cause the critical influence.

2. ED Model for Flexible Polymer

A theoretical prediction of Eq. (11)and the experi-
mental results deduced from a series of articles by
Prud'homme et al. [13,15] were compared in Figure 7.
Prud'homme et al. carried out experiments on the
characterization of partially hydrolyzed polyacryl-
amide which is a flexible linear-chain coil. In Figure 7,
despite of the somewhat unclear fitness, the agreeient
between the theoretical and experimental studies of
linear ED model can be said acceptable. It is the same
behavior to SB model that the R, increases with in-
creasing the e which is defined as € = 1'a=/(2KT/H)/L.

In particular, it is noted that this result of ED model
does not include the flow effect on Flexible polymer
chains as mentioned in the theoretical part [see Eqgs.
(9)(11)]. The flexible chain structure in flow fields
makes the analysis of this model more complicated
since the onset of deformation in flow is observed.
Hence, we recommend that spring force constant H
owing to the elastic characteristic of this model
polymer should be considered carefully.
3. RR Model for Rigid Polymer

The RR model can be treated as a multibead model
with infinitely large numbers of beads, and we know
that it should have identical distribution function to
that of RD model if the beads are equispaced and mass
of the polymer is equally distributed in each bead,
where every bead is of point mass. Therefore, it turns
out to be identical to that of RD without retardation,
the difference only arises when the retardation of poly-
mer velocity is concerned. As mentioned before, RR
has only one-third retardation of that of RD.

Degraded xanthan molecules are characterized by
measuring intrinsic viscosity and the R,, whose vis-
cometric properties are quite consistent with those of
relatively rigid rods. It is well known that the molec-
ular weight of xanthan decreases owing to the chain
scisston mechanism by sonication for increasing
lengths of time. The value of intrinsic viscosity for a
linear polymer in a specific solvent is related to the
polymer molecular weight through the familiar Mark-
Houwink relation. Unfortunately, however, there is
not a clear-cut answer to the question of the xanthan
conformation or the above relation. To calculate the
weight-average molecular weight of xanthan Mw for
this research, we set up the following very reliable
equations:

3. 7731 % 1078 - Mw % 26a;
for below [7]~200, e, Mw~2. 5% 10°)

[71= 16 7540 - 10 *-Mw o 26h
ifor 200~1i7] ~1000, i.e.,
2.5 - 10° ~Mw~10%;

5.4387 = 10 - NMw 08! i26¢

ifor above (7] ~1000,1e.. Mw~10°"

where each Mark-Houwink constant was evaluated
from literature information [18-20}. The decreasing
tendency of the exponent of Mw suggested that this
molecule should not be completely RR but somewhat
flexible. Estimated Mw values from the above Eq. (26)
closely agreed with the Yamakawa-Yoshizaki's cor-
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Table 2. Experimental results of the size effect for xanthan on R,

Sonication Time [7] x 10-3 Mw x 10-5 Leg
for xanthan(min) mlig) (g/mol) b () ) Re
0 (= native) 5.34 38.775 425 1.154 0.138 1.0313
5 2.24 17.008 262 0.640 0.077 1.0220
10 1.05 8.372 172 0.382 0.046 10183
20 0.32 3511 89 0.184 0.022 1.0126
30 0.18 2.322 65 0.129 0.015 1.0105
60 0.05 0.949 32 0.059 0.007 1.0040

*at flow rate = 1.4 m{//min.

I 10 native xanthan
o
= 8
E
T
& 6
': I sonicated, 5 min
< a4
5 -
[~

sonicated, 10 mir,

2 "-//A’/mnk‘aled. 20 min.'
sonicated, 30 min|
0 - sonicated, 60 min |
0 025 05 0.75 1.0 1.25
cx 1073 (ppm) ——=
Fig. 8. The plot of reduced specific viscosity versus
concentration as a function of sonication
time, at 30°C.

relation [20] with relative error of under11%.Intrinsic
viscosities [n] were obtained at zero concentration by
extrapolating the curves of reduced specific viscosity
15,/ C versus concentration as shown in Figure 8. The
reasonable relationship between intrinsic viscosity
and macromolecular dimensions for RR particles was
predicted for the high values (>50) of length-to-di-
ameter ratio p [18]. These relations between p and
viscosity factor v, =[],/ Vv, Can be approximated by
the power law function:

vo=0. 159p™*", 7

Here, v, is the specific volume, equal to 0.620 for
oligosaccharides. The calculation for rods gives p, then
the equivalent length of xanthan L, can be estimated
from

45
27N,

L= [7)Mw (In2p-0. 5) 28

where N, is Avogadro’s number. The e can be ob-
tained from the computation of equivalent confined

April, 1990

Table 3. Experimental results of the flow rate ver-
sus R, relation for xanthan

— Ry - Shear Rate,
. Flow Rate sonication time for
Run No. : A Nominal
(m{/min) xanthan (min) i
(sec™)
0 10 60
i 0.5 1.0380 1.0206 1.0038 798
2 1.0 1.0305 1.0175 1.0042 1597
3 20 1.0240 1.0150 1.0030 3194
4 36 1.0180 1.0127 1.0027 5749
5 9.5 1.0142 1.0101 1.0033 15170

*see Figure 9.

bed radius with Eq. (25). These results are presented in
Table 2, where the R, of xanthan can be seen to in-
crease gradually as e increases.

4. Effect of the Flow Strength on RR Model

By anisotropic, we mean that the angular distri-
bution of the orientations of the rods is not random.
R/s of the three xanthan samples which were native,
and sonicated xanthans with 10 min as well as 60 min
were determined for the flow rate variations as given
in Table 3. Theoretical predictions by numerical sim-
ulation for solving Eq. (24) and experimental results
marked with data points are illustrated in Figure 9,
which agree each other reasonably. Solid lines in the
plot are simulated resuits for many differents of € and
log B values. The R, measurements for exceedingly
small flow rate less than 0.1 m//min were difficult
since the required run times were very long (over 24
hr) for this HDC experiment.

From the R, versus log g plot for different e values
of Figure 9, the R, decreases clearly with increasing
flow rate within the range of about log 8 =0~3.How-
ever, in the outside of this region the R, maintains
constant, which is independent of flow rates: i.e., too
weak and too strong flow regimes. It can be supposed
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1.07
€=0.138 Experimental data |
1.06 r [J: native xanthan |
O : sonicated, 10 min
105+
v : sonicated, 60 min
_ 104
|
1.03 ] '
0.04
1.02 1““\ |
POIT o007 S~
1 - e ——
-2 -1 0 1 2 3 4 5

log B
Fig. 9. Experimental verification on numerical si-
mulations for R;versus log 8 with different ¢
values.

that the deviation behavior of experimental R, with in-
creasing e is perhaps caused by a little deformation of
xanthan for high Mw (i.e., above Mw ~10%. Here, the
dimensionless shear rate B defined in the preceding
part corresponds to the rotary Péclet number. Quali-
tatively, one can conclude that the increasing flow rate
causes the rods to align more in the flow direction.
This alignment will result in a decreased effective
diameter for rod which is equivalent to a characteristic
length transverse to the direction of flow. Our ap-
prcach emphasizes the importance of the rod orien-
tational distribution on the microscopic phenomena.
In addition, if the flow rate is low enough the maxi-
mum effect of separation on RR model would be ex-
m2cied because of its highest R, value. However, for the
fweqe separation as well as the reducing of disper-
si . turing HDC operation, another subject to deter-
riine the optimum conditions is remained unsolved.

CONCLUSIONS

The application of HDC as a substitutive technique
for high-molecular-weight polymer fractionation, is
still in its early stage of development. A theoretical
prediction for HDC analysis involving particle size as
well as flow effect and its experimental verification
have been performed. Main conclusions are as follows.

(1) Flow and dynamic behaviors of polymer in the
HDC column have been analyzed and developed
quantitatively by introducing the dimensionless sepa-
ration parameter R,, which could be obtained mathe-
matically from the knowie distribution function (¢)
and velocity profile for particles {v,) under shear flow
field.

(2) Good agreements between our theoretical pre-
dictions and other researcher's experimental resuits

were found in cases of SB model within the region of
rather small € and ED model. The disagreement in SB
model with increasing ¢ seems to be due to the fact
that the main concern of this work was confined to the
hydrodynamic effect only. The R, equation of rigid
polymer model was obtained by extending the molec-
ular theory of dilute polymer solutions in a confined
geometry to mimic the flow in the porous media HDC
column.

(3) The RR model polymer used here was xanthan
gum—a slightly flexible rod-like. Despite of several
approximations, there was the remarkable agreement
between the numerical simulation and experiments.
The R, value showed the gradual increasing behavior
with the particle size increased, but revealed a kind
of transition with decreasing behavior as the flow
strength increased. However, over a certain range (that
is about log B <0, log A >3), the invariant R, regimes
independent of flow rates were observed in particular.
This result of flow effect study represented the orien-
tation of the rods in flow. Additionally, for the same
flow strength the R, was higher as the ¢ was larger.

Appendix A: Algorithm for Numerical Sotation

The present work is undertaken to calculate the full
set of R, values for rigid polymer as functions ol size (€)
and flow strength (8) by solving Eq. (24). In order to
increase the accuracy as much as possible all solutions
are computed in double precision (64-bit), and the
general algorithm of the program is as follows.

First of all, the main program HDCRF reads as in-
put data the following: sk(ip,iq.ir), €, 8, and N. Here,
the sk(ip,iq,ir) denote the coefficients K§,,, which
exist in the data file SKOUT-DAT evaluated by run-
ning the program SKCOMP. The program SKCOMP
calls on the subroutine QUADZD to integrate a suj-
plied function FUNCT over a two-dimensional space
and should require two copies of a one-dimensional
integrator estimated by using 24-point Gauss-Legendre
quadrature formula. The FUNCT calls on the function
PN which computes the associated Legendre poly-
nomial P5, based on the stable recurrence involving
subscript 2n. Next, the HDCRF should solve (N + 1)2
equations for Egs. 19 and 21 simultaneously, and the
following matrix form is built up:

X} S A = B’ S
Xigo X Xyt ‘a, (= A: i .
R : a,=Ap | |0

fa, (=A, 0
ragt= AL 0

Korean J. Ch. E. (Vol. 7, No. 2)



136 M.-S. CHUN et al.

e L L

where [A] and {B] are (N + 1) by 1 column matrices.
Note that the [B] matrix is a so-called unit column
matrix. In this step, computations of sk and sa vari-
ables are achieved by reading the SKOUT_DAT as
well as by calling on the function SA. Solutions of the
above matrix equation for an unknown set of vectors
[A] (that is, A, A, Al A2 Al ...y are performed with
calculations of the matrix (X™'] which is the matrix in-
verse of a square matrix [X] of order (N + 1) by calling
on the subroutines LUDMAT and FBSMAT (see Ref.
22, Ch.2). In both LUDMAT and FBSMAT, the matrix
[X] is decomposed into lower and upper triangulars
and then is solved exactly by forward and back substi-
tutions. The number of N can be extended to rather
large value. The limiting factor is only the available
memory size, not accuracy or even running time.
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NOMENCLATURE
A7, o coefficients of distribution function solution
a . reciprocal dimensionless length scale
a’ . reciprocal characteristic length scale of ED
amy - coefficients of Eq. (19), defined in Table 1
C : concentration distribution
C., abbreviation for cos(m ¢ )
C, . constant of Eq. (9) in dimensionless coordi-
nates
¢ polymer concentration
D : capillary or column diameter
D, packing diameter
, rorational diffusivity

d particie diameter

’ o resicial function

H  spring force constant

i northizlization operator

K a funcrion defined by Eq. (20)

! Boltzmann constant
L . iength of RR, or RD connector
eq equivalent xanthan length
l : spacing between the parallel plates
Mw : weight-average molecular weight
N . integer variable for order of approximation
to ¢

April, 1990

N, : Avogadro's number
7 . associated Legendre polynomial
p . length-to-diameter ratio
R, : retention factor
r : radial axis
r : configuration vector of RD
T\, I, I, : position vector
r, : equivalent capillary radius
T absolute temperature
t time
tn eluant elution time
t : (1-2z)1 e
t, : particle elution time
\ average eluant velocity determined by t,,
\ average particle velocity determined by t,
U : velocity vector
U, :constant velocity defined by quadruple of the

maximum velocity
viscosity factor

U, © local eluant velocity

v, . local particle velocity

vy,  specific volume

xy.z : the element of configuration vector of r

z. : center of mass Z coordinate of polymer

Greek Letters

a velocity gradient

B dimensionless velocity gradient

4 retardation factor

5 Kronecker delta

€ dimensionless length scale

€, mean bed porosity

¢ friction coefficient of bead

N,/ reduced specific viscosity

(7] intrinsic viscosity

[n], : Newtonian intrinsic viscosity

§. ¢ : polar, and azimuth angles defining the orien-
tation of 1

A relaxation time constant for RD

A spherical operator

¢ nondimensionalized distribution function

¢ Nth order of approximation to ¥

e  nondimensionalized equilibrium distribution
function

Q  : convective operator

Superscript

m,p : upper index with integers
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Subscript

k.,n,q :

lower index with integers
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